人造肌肉又叫电活性聚合物,是一种新型智能高分子材料,它能够在外加电场下,通过材料内部结构的改变而伸缩、弯曲、束紧或膨胀,和生物肌肉十分相似。医学上,人造器官是指能植入人体或能与生物组织或生物流体相接触的材料,有天然器官组织的功能或天然器官部件功能的材料。根据制造器官使用的材料以及其功能科学将人造器官分为三种:机械性人造器官、半机械性半生物性人造器官、生物性人造器官。其中,前两类型种的人造器官移植后会让患者产生排斥反应,对受体来说,适无副作用的是最后一种也就是生物性人造器官。
人造肌肉状材料是根据生物学原理,由3种氨基酸(缬氨酸、脯氨酸和甘氨酸)按一定顺序排列而构成的,它类似于人的肌肉纤维,具有弹性,且能随环境温度和化学成分(如pH值)的变化而伸缩。由于它能模拟活体的生物过程,于是,人们把这种材料称为生物聚合物。
来自亚利桑那州州立大学的研究员西宫川认为,人类的肌肉是人四肢活动的马达,只有生产出超级的人造肌肉和装置,才能让残障人士的假肢恢复正常的功能,这种新式的人造肌肉将有可能治疗神经肌肉型疾病帕金森氏症。为此,科学家们利用生物仿生学,通过对蟾蜍和变色龙的肌肉的研究,打造出了这种神奇的“生物马达”。
科学家发现,一个蟾蜍的下巴肌肉能够产生大于它自身体重700倍的力量,而变色龙捕食的时候,舌头肌肉收缩时所产生的力量也是非常惊人的。而目前人类所制造的最好的机械设备(动力马达)也只能产生蟾蜍下巴肌肉的三分之一的力量。对于这种神奇的现象,科学家们通过对蟾蜍和变色龙的解剖寻找相关的信息。他们认为蟾蜍下巴的特殊构造是造成其肌肉产生强大力量的原因之一,这种构造可以在最短的时间内贮存力量,适应肌肉所产生的张力,在蟾蜍大脑的操纵下实现肌肉的迅速收缩。
亚利桑那州州立大学的科学家中们从蟾蜍的肌肉构造上获得灵感,设计出了一种“机器肌腱”,这种装置可以模仿蟾蜍的下巴肌肉迅速收缩,产生强大的能量。这种机器肌腱就是“生物马达”,也就是人造肌肉。再配合独有的高端协调辅助设备,可以使假肢等设备和人的大脑信号协调一致,从而提高假肢的运动功能,实现残疾人的正常生活。但是科学家认为,这种模仿蟾蜍制造出的人造肌肉最关键的部分还是高端协调辅助设备,只有通过大脑的操纵实现功能才是生物马达最关键的部分,这个关键部分还需要继续的研究探索。但是科学家表示,这种“生物马达”人造肌肉将会促进神经肌肉学的研究和发展,有助于对人类神经肌肉学的扩展性研究,将生物仿生学和生物动力学有机结合起来,这种神奇的“生物马达”堪称神来之笔,不仅可以帮助残疾人的生活,还推动了科学家对于生物仿生技术的发展。
科学家对人造肌肉的研究已经进行了几十年,人造肌肉所用的材料种类也很多,有塑料、类似橡胶的聚合物、凝胶以及金属,但是这些材料做成的人造肌肉面临很多问题,比如需要消耗大量能量并且可能经常失效而无法像真正的肌肉那样能自我修补。
活动自由工作更持久
现行的机器人或机械手臂受到能量限制,只能在电源附近活动。因此,美国国防部高级计划研究署一直希望能研发出一种能像人类一样自由活动、而且自身可以供应能量的新型装置,于是便有了这种超级仿生肌肉的模型。据研究人员介绍,这种仿生肌肉的最大好处就是能量由燃料供应,以弥补电池功能的诸多不足。仿生肌肉可以自由活动,而且能工作更长时间,不会因电池短命而动不了,也不必时刻绑个电源在身边。
按照研究人员的设想,仿生肌肉研制成功后,将能完成人类和机器人各自无法独立做到的事情。它能像人类一样到处行动,能像自然手臂一样灵活运用,还能“绑”在“外骨骼”上,使消防员、士兵和宇航员等特殊行业的人拥有超人般的力量。有了它,也许消防员就可以只手撑起倒塌的建筑材料,而战场上的士兵也可以变成不知疲倦的“超人”。
比常人肌肉强100倍
为了实现这些功能,美韩两国科学家联手开发了两种仿生肌肉,以适应不同需要。
一种是把化学能转化成电能。它用含有催化剂的碳纳米管弯曲搭建出肌肉块、“燃料细胞”电极和超级电容器电极,它们会在充满氢的环境中,源源不断地产生电源。
另一种是把化学能转化成热能。它利用氢和乙醇反应提供能量,配合特制的记忆金属丝。例如,当温度降低时,金属丝就会收缩,催化剂减少作用,人造肌肉就会放松收缩。这种方法打造出来的人造肌肉力量最大,举力是正常骨骼肌肉的100倍以上。
有循环系统也有神经
不过目前看来,这两种肌肉都没有一点肌肉的样子,它们只是一堆电线、悬臂和玻璃瓶。惟一能够区别于机械臂的特点就是它们能够像生物一样“呼吸”:吸入氧气,释放乙醇和氢,提供能量。
这种情况完全可能。加拿大学者指出:“事实上,人造肌肉已成功复制出了很多生物特点。比如说,它有循环系统,氧和燃料可以通过循环系统输送,为肌肉本身提供化学反应的场所,然后做出机械动作;它还有神经,由特殊电路组成,能够做出反应并控制自己的行为;它还能存储能量,并像人类的肌肉一样,直接对接触做出判断反应。”
人造肌肉伸缩性已能和人的肌肉相媲美,材料自身性能决定,无需马达、齿轮等复杂装置,体积小、重量轻。研究人员称研发的两种人造肌肉性能均非常突出,同时具备燃料电池和肌肉的功能。其中一采用了含催化剂的碳纳米管电极,可作为燃料电池的电极将化学能转化为电能,级电容器的电极来储存电能,还可作肌肉电极将电能再转化为机械能。另外一种是目前最强健的肌肉,是通过混合燃料和空气中的氧气发生催化反应,将化学能能,升高的温度可使制造肌肉的具有形状记忆。
功能的金属材料用力收缩,冷却后肌肉胀放松。由于这种燃料电池肌肉所使用的外层涂有纳米颗粒催化剂的形状记忆金在市场上买到,这使得它尤其容易在自动装置中得到应用。
这次新研制成功的人造肌肉则解决了这些问题。研究人员使用更具有弹性且已经被广泛应用的碳纳米管(carbonnanotubes)取代其它金属薄膜来充当电极,这样就避免了因重复使用导致金属膜失效而出现的供电问题。另外,如果碳纳米管某一部分出现问题,它周围剩下的区域就会将其自我封闭起来,使其不会导电,这样就防止了损坏影响到其它区域。佩·齐平说,“我们对这个新装置已经多次进行了类似的实验,包括用大头针将人造肌肉刺破,结果证明它并没有瘫痪,还能正常工作”。
更神奇的是,这种能自我修复的人造肌肉还能发电和储存电能。当此人造肌肉在膨胀后收缩时,它自身碳纳米管的结构会进行重新排列,这是它就会产生一股小小的电流。并且这股电流是可以储存并加以利用的,例如给下一次肌肉运动扩张提供能量,或者贮存在电池里给类似于iPod的移动设备充电。“它可以将你输送给它的近70%的能量保存下来,”
值得一提的是,人造肌肉的服务对象不仅仅是人类本身。研究者介绍,人造肌肉还能成为机器人、飞机、海洋舰队等的帮手。
由于乙醇产生的能量系数比电池等常规能源高出30%,因此,人造肌肉可以安装在机器人身上充当“电池”。还可以用在假肢上,给假肢新的力量。
此外,人造肌肉还可以当作飞机和舰艇的“外衣”。人造肌肉是由碳纳米管制造而成,“披”在运输工具外面,可以使它们运行起来阻力更小、更顺利。将来有一天,人造肌肉甚至能够替代金属制的心脏起搏器,打造和人类身体更亲近的新一代“人造心脏”。
超强人造肌肉
美国和韩国研究者联手研究出一种超级仿生肌肉。这种肌肉不仅力量大得惊人,而且从来不会疲惫。这一发明可能最终用于消防队员、宇航员或战士,为各条战线打造力大无穷的“超人”队伍。
新的人工肌肉可以模仿肌肉收缩产生力量。将石蜡嵌入经过编织形成一种特殊结构的碳纳米管纤维中,通过直接加热、电加热,或者使用一道闪光,石蜡就会发生体积膨胀,使整个“肌肉”膨胀。但由于碳纳米管纤维特殊的结构,“肌肉”的长度会同时发生收缩,就产生了力量。
随着通电和断电,肌肉丝扭曲和恢复所产生的扭力足以为微型弹射器提供动力,在实验室工作台上发射金属箔片。研究人员决定建造一个弹射器来展示此项新发明的奥妙。
这种“肌肉”的举重能力是同等尺寸的天然肌肉的200倍,如果按重量相比,产生的扭力高于大型电动发动机。但人工肌肉还不能完全吊起一架钢琴,因为当前可行的生产技术限制了丝的重量。
压电材料
自从1990年代中期以来,Bar-Cohen一直为经常变化的国际EAP研究人员团体充当非正式的协调人。回到该领域的萌芽时期,“我从科技论文上读到的电活化聚合物材料并不像广告吹嘘的那样神奇,”他一边回忆,一边狡黠地笑着,“而且当我从NASA获得经费来研究该技术时,我不得不去了解谁在做这个领域的工作,以便从中找到某些启发。”仅在数年之内,Bar-Cohen就已掌握了足够的知识,并且协助举办了首届关于该主题的科技研讨会,开始出版一份EAP时事通讯,发布了一个EAP网站,还编写了两部关于这项新兴技术的论著。
在喷气推进实验室(JPL)院内的一幢矮层研究建筑内,试验台上摆满了各种致动设备原型以及测试装置,Bar-Cohen开始回顾他已经了如指掌的关于该领域的历史。他说:“很长一段时间内,人们一直在寻找不用电动马达就可以移动物体的方法,因为马达对于许多应用而言显得太过笨重。在EPAs出现之前,马达的标准替代技术是压电陶瓷,该技术曾一度是研究的热点。”
在压电材料中,机械应力可导致晶体电极化,而且反之亦然。用电流刺激这种材料将使其变形;通过改变其形状可以产生电。Bar-Cohen从一张实验长椅上拿起一只浅灰色的小碟子,说:“这块碟子由PZT(锆钛酸铅)制成。”他向我们解释:电流使得压电PZT产生收缩或者膨胀,幅度只有不到其总长度的百分之一。尽管变形量很小,但是却有用处。
在隔壁的一间屋子中,Bar-Cohen出示了由PZT碟子驱动的一英尺长的冲击钻,他正和JPL的同事以及Cybersonics公司的工程师们一起研制这些PZT碟子。他介绍说:“在这个圆筒内是一叠压电碟子,当被交流电激活时,这叠碟子将以超音速拍打钻头,钻头则以高速率上下跳跃,从而钻入坚硬的岩石。”在另一侧是几堆石块,石块已经被钻出很深的孔眼。
该钻子作为一个范例,说明了用压电陶瓷制作致动器的有效性,的确让人印象深刻。但是,在许多应用中,要求电活化材料的膨胀幅度超过百分之零点几。
高分子液晶材料
高分子液晶是科学家们心目中的硅的理想替代物。过去,许多微观研发工作都是在硅材料的基础上进行的。而越来越多的科学家认为,高分子液晶聚合物的柔韧性比硅好。对液晶聚合体进行精细剪裁加工后,加工出的样品对温度变化、紫外线照射等特定的外界刺激有相应的反应,也比硅的敏感程度高。而且液晶聚合物的制造成本比硅材料更低,加工工艺也更加简单。
相比起硅制的假肢,“人造肌肉”更显神奇。20世纪80年代,科学家们发现,在电流的作用下,高分子液晶材料的分子可以发生形变和扭曲,进而使材料本身产生收缩和弯曲——这非常类似于人类的肌肉,于是科学家们开始研究如何利用高分子液晶材料构造“人造肌肉”。传统的机器人除了关节之外,四肢不能自由活动,如果有了“人造肌肉”,则他们的四肢会更加灵活且发达。
尼龙丝材料
尼龙丝这种令人意料之外的功用,是在本周出版的美国《科学》杂志中公布的,而这项研究的参与者则是在美国德克萨斯州大学达拉斯分校工作的巴西科学家们。
这项研究由RoyBaughman领导,他是在这项领域中对世界贡献最大的科学家之一。同时,另外两位科学家MônicaJungdeAndrade与MárcioLima在美国相关机构攻读完博士后课程,也加盟了这项新研究。
研究显示,能够成为制作人造肌肉材料的最重要特征,就是此材料有能力在储存大量能量的同时以同样的方式保持肌肉的活性。
另一个重要的指标就是这个制作材料的可逆转性。因为研究显示,除非一种材料在经历几千次储存与释放能量的过程中完全不损失其性能,否则就无法保持其强大的收缩力以保持肌肉活性。
在攻克这一难关的过程中,科学家们其实已经使用了许多材料进行人造肌肉实验。科学家们起初使用碳纳米管来进行人造肌肉实验,他们将该材料加热,并且像真正的肌肉一样举起重物,但是许多实验材料的实验结果却并不理想。
MárcioLima向记者解释道,解开这个谜题的关键就是研究员们找到了某些纤维材料的热膨胀系数为负,这就相当于在加热材料和冷却材料的过程中,只要控制好与应用好材料温度的变化,就能够准确地在材料的运动过程中保持材料的可逆转性。
他说道:“我们发现将纤维拧在一起形成一个弹簧或者线圈的形状能够放大使用效果。之后我们又实验了许多更加便宜的纤维材料,也达到了很好的效果,尼龙丝就是其中一种。”
这种材料的最大好处就是在于价格便宜,因为这种尼龙丝每斤只需花费15雷亚尔。而且在实验中,这种尼龙丝所制作的人造肌肉,在100摄氏度温度变化内的承重效果,比人体肌肉的性能要强84倍之多。
在未来,这种新型技术可能会应用于机器人制作、生物医学工程(例如制造承重性能强大的假肢等等),甚至在纺织行业也可以应用。例如,在严热或寒冷的天气中,你可以打开或关闭衣服上用该尼龙丝科技制成的“气孔”,以达到调节温度的目的。
SRI小组的领导者RonPelrine介绍说:“在与日本签署微型机器计划(Japanesemicro-machineprogram)合同之后,斯坦福研究院(SRIINTERNATIONAL)从1992年开始研究人造肌肉。”他从前是一名物理学家,转行做机械工程师。日本官方在寻找一种新型的微致动器技术。几位SRI研究人员开始寻找一种在力学、冲程(线性位移)以及应变(单位长度或单位面积的位移量)等方面的性质与自然肌肉类似的致动材料。
“我们考察了一大堆有希望的活化技术,”Pelrine回忆道。然而,他们最终选择了电致伸缩聚合物,当时来自路特葛斯大学(RutgersUniversity)的JerryScheinbeim正在研究这种材料。这种聚合物中的碳氢分子以半晶体点阵的方式排列,而这种晶阵具有类似压电的属性。
当处于电场中时,所有的绝缘塑料(例如聚亚安酯)将会沿电力线的方向收缩,同时沿垂直于电力线的方向膨胀。这种现象与电致伸缩不同,被称为麦克斯韦应力。Pelrine说:“这种现象早就为人们所熟知,但一直被当作是一种很麻烦的效应。”
他意识到,比聚亚安酯更软的聚合物在静电吸引作用下将更容易挤压,因而可以提供更大的机械应变。通过对软硅树脂进行试验,SRI的科学家很快证明其应变在10-15%之间,这十分合意。经过进一步研究,这个数字还可以提高到20-30%。为了区别这种新的致动器材料,硅树脂和其他较软的材料被命名为电绝缘橡胶(dielectricelastomers)(也被称为电场活化聚合物。)
在确定出几种有前途的聚合物材料之后,在1990年代剩余的大部分时间内,该小组将注意力集中于研制特定设备应用的具体细节。当时,该SRI研究小组新的外部经费支持和研究方向由美国国防高级研究计划局(DARPA)和海军研究中心(OfficeofNavalResearch)提供,其主管的首要兴趣在于将该技术用于军事目的,包括小型侦察机器人以及轻型发电机。
由于橡胶开始表现出大得多的应变,工程师意识到电极也必须是可以膨胀的。普通金属电极无法伸长,除非将其割裂。Pelrine提到:“起先,人们不用为这个问题操心,因为他们研究的材料所提供的应变只有1%左右。”最后,该研究小组开发出一种基于在橡胶阵列(elastomericmatrix)中填充碳粒的屈从电极。他指出:“由于电极和塑料一起膨胀,它们可以在整个活动区域之间保持电场。”SRIInternational为该概念申请了专利,它是后来人造肌肉技术的关键之一。
Pelrine急于向我们展示,他拿出一个15厘米见方看上去像相框的东西,其两面的塑料包夹由于膨胀而紧绷着。“看,这种聚合物材料延展性非常好,”他说,同时用一只手指按入其透明薄膜。“它实际上是一种双面胶带,一大卷的价格很便宜。”在中间夹片的两面是黑色、镍币大小的电极,连着导线。
Pelrine拧开电源的控制旋钮。立刻,黑色的圆形电极对开始膨胀,直径增加了四分之一。当他将旋钮拧回到原来位置时,电极马上又收缩至原状态。他咧嘴笑了笑,并且重复操作了好几次,解释说:“根本上,我们的设备就是电容,也就是两块平行的充电平板,中间夹着电绝缘材料。当电源接通时,正负电荷分别在相反的电极上积累。电极平板互相吸引并且挤压中间的绝缘聚合物,并且聚合物的面积扩大。”
尽管已经确定出几种有前途的材料,要想在实际设备中实现可接受的性能的确是一个挑战。然而,该小组在1999年取得的一系列突破引起了美国政府及工业界相当的兴趣。
有人通过观察发现,在电活化聚合物材料之前预先拉伸它,将大大提高其性能。小组的另一位成员RoyKornbluh工程师回忆说:“我们开始注意到存在一个甜区(sweetpoint),这时可以获得最优性能。没有人确切地知道为什么,但是预拉伸聚合物可以使击穿强度【电极之间电流通路(passageofcurrent)的阻力】增加100倍之多。”电活化应变提高的幅度与之类似。尽管原因还不是很清楚,SRI的化学家裴其冰(音)认为:“预拉伸可沿平面膨胀方向定位分子链,并且材料使得沿该方向更加坚硬。”为了获得预拉伸效果,SRI的致动器设备采用了一个外部支撑结构。
第二项关键发现得益于研究人员“测试我们所知道的每一种可伸展材料,我们称之为爱迪生方法,”Pelrine愉快地告诉我们。(为找到合适的电灯灯丝材料,托马斯·爱迪生系统地试验过各种材质。)“在我家里,为了不让我那刚会走路的孩子乱拿东西,我们用一把以聚合物材料做的门锁将冰箱锁住。孩子逐渐长大,我们不再需要锁什么东西,因此将锁拿走。由于它是用可伸展材料制成的,我决定测试一下它的应变属性。令人惊讶的是,它拥有极佳的性能。”追溯锁的来源以及分析其组成不是什么难事,最后,这种神秘的聚合物“原来是聚丙烯酸橡胶,它可以提供极大的应变和能量输出,线性应变达380%之多。这两项进展使得我们能够开始将电绝缘橡胶应用到现实的致动器设备中。”该研究人员介绍说。
天然橡胶材料
SRI小组的通用研究方法比较灵活,包括许多种设计、甚至包括不同的聚合物。正如裴其冰所说:“这是一台设备,而不是一件材料。”据Pelrine称,该小组能够用不同的聚合物产生活化效应,包括丙烯酸树脂和硅树脂。甚至天然橡胶也能产生一定效应。例如,在外部空间的极端温度环境中,人造肌肉最好采用有机硅塑料,已经证明这种材料可以在零下100摄氏度的真空环境下工作。对于要求更大输出力的应用,可能需要更多的聚合物材料或者将多台设备串联或并联。
SRI成员vonGuggenberg估计:“由于可以买到电绝缘橡胶的现货,而且我们在每台设备至多只用到几平方英尺的材料,因此致动器将会非常便宜,尤其是对于批量生产。”
激活电绝缘橡胶致动器的电压相对较高,通常为1到5千伏,因此该设备可以在非常低的电流下运转(一般而言,高电压意味着低电流)。致动器还可以使用较细、不太贵的导线,并且可以保持相当冷却。Pelrine说:“在到达电场中止以及电流流经(电极之间的)间隔的临界点时,更高的电压将产生更大的膨胀和应力。”
更大的难题是高电压要用于移动设备,因为电池通常是低电压的,因而还需要附加的变压线圈。而且,在美国宾夕法尼亚州州立大学,张启明(音)和他的研究小组已经在尝试通过将某些电致伸缩聚合物与其他物质结合生成合成物,来降低它们的激活电压。
当被问及电绝缘橡胶的耐久性时,vonGuggenberg承认还需要更多的研究,并且证实了一个“合理迹象”,即他们要继续工作足够长时间以实现商业化用途,“例如,我们为一位客户运行的设备可产生5-10%的应变,循环1000万次。”另一台设备可产生50%的面积应变,循环100万次。尽管人造肌肉设备比相应的电动马达要轻得多(聚合物本身的密度与水差不多),SRI仍在通过减少必要的外部预应变设备,来努力减轻其质量。2004年5月27号日本横滨国立大学渡边正义教授领导的研究小组开发出一种新型人造肌肉,用一节干电池即能驱动,用于微型机器和小型机器人的关节部位十分合适。
这种人造肌肉形状像口香糖,长约5厘米,宽1厘米,厚几百微米。它由一种随电压变化而伸缩的高分子材料与一种不易挥发的离子液体混合制成,可以在正常环境下长期使用。如果在微型机器的关节和驱动部位装上这种人造肌肉,它可像人的关节一样发挥作用。