在最早的观测记录中,伽利略·伽利雷(GalileodiVincenzoBonaultideGalilei)在1612年12月28日首度观测并描绘出海王星,1613年1月27日又再次观测,但因为观测的位置在夜空中都靠近木星(海王星与木星处在合的位置),这两次机会伽利略都误认海王星是一颗恒星。因此,海王星的发现并不归功于他。1612年12月,他第一次观测海王星时,海王星在天空中几乎是静止的,因为那天它刚好逆行了。这种明显的反向运动是当地球的轨道经过一颗外行星时产生的。因为海王星才刚刚开始它的年度逆行周期,这颗行星的运动太微弱了,伽利略的小型望远镜无法观测到。2009年,墨尔本大学的物理学家大卫·杰美生宣称,有新的证据表明伽利略至少知道他看见的星星相对于背景的恒星有微量的相对运动。
在1821年,法国天文学家亚历斯·布瓦尔(AlexisBouvard)出版了天王星的轨道表,随后的观测显示出与表中的位置有越来越大的偏差,使得布瓦尔假设有一个摄动体存在。在1843年约翰·柯西·亚当斯计算出会影响天王星运动的第八颗行星轨道,并将计算结果皇家天文学家乔治·艾里,他问了亚当斯一些计算上的问题,亚当斯虽然草拟了答案但未曾回复。在1846年,法国工艺学院的天文学教师奥本·勒维耶(UrbainLeVerrier)在得不到同行的支持下,以自己的热诚独立完成了海王星位置的推算。但是,在同一年,约翰·赫歇耳也开始拥护以数学的方法去搜寻行星,并说服詹姆斯·查理士着手进行。在多次耽搁之后,查理士在1846年7月勉强开始了搜寻的工作;而在同时,勒维耶也说服了柏林天文台的约翰·格弗里恩·伽勒(JohannGottfriedGalle)搜寻行星。当时仍是柏林天文台的学生达赫斯特(Heinrichd'Arrest)表示正好完成了勒维耶预测天区的最新星图,可以作为寻找新行星时与恒星比对的参考图。在1846年9月23日晚间,海王星被发现了,与勒维耶预测的位置相距不到1°,但与亚当斯预测的位置相差10°。事后,查理士发现他在8月时已经两度观测到海王星,但因为对这件工作漫不经心而未曾进一步的核对。
由于民族优越感和民族主义的影响,使得发现海王星在英法两国余波荡漾,国际间的舆论最终迫使勒维耶接受亚当斯也是共同的发现者。然而,在1998年,史学家才得以重新检视天文学家奥林·艾根(OlinEggen)遗产中的海王星文件(来自格林威治天文台的历史文件,明显是被奥林·艾根窃取近三十年,在他逝世之后才得重见天日),在检视过这些文件之后,有些史学家认为亚当斯不应该得到如同勒维耶的殊荣。
在发现之后的一段时间,海王星不是被称为“天王星外的行星”就是“勒维耶的行星”。伽雷是第一位建议取名的人,他建议的名称是Janus(雅努斯,罗马神话中看守门户的双面神)。在英国,查理士将之命名为Oceanus;在法国,阿拉贡(FrançoisArago)建议称为勒维耶,以回应法国之外强烈的抗议声浪。
法国天文年历当时以赫歇耳称呼天王星,相对于以勒维耶称呼这颗新发现的行星。同时,在分开和独立的场合,亚当斯建议修改天王星的名称为乔治,而勒维耶经由经度委员会建议以Neptune作为新行星的名字。斯特鲁维(Struve)在1846年12月29日于圣彼得堡科学院挺身而出支持勒维耶建议的名称。
海王星
远看海王星
内部构造
海王星
很快的,海王星成为国际上被接受的新名称。在罗马神话中的Neptune(尼普顿)等同于希腊神话的Poseidon(波塞冬),都是海神,因此中文翻译成海王星。新发现的行星遵循了行星以神话中的众神为名的原则,而除了天王星之外,都是在远古时代就被命名的。中文及韩文、日文和越南文的汉字写法都是“海王星”。在印度,这颗行星的名称是Varuna(Devanāgarī),也是印度神话中的海神,与希腊-罗马神话中Poseidon或Neptune的意义是相同的。在蒙古,海王星称为DalainVan(Далайнван),反映了其同名神的角色是大海的统治者。在现代希腊,人们仍旧将海王星称为波塞冬(Ποσειδώνας,Poseidonas)。在希伯来语中,2009年希伯来语学院投票将海王星的名称称为רהב(Rahab),来自《圣经》中提到的海怪,尽管现有的拉丁词Neptun(נפטון)更为常用。在纳瓦特尔语中,海王星被以雨神Tlāloc的名字命名为Tlāloccītlalli。
从1846年发现海王星到1930年发现冥王星之前,海王星是已知最远的行星。当冥王星被发现时,冥王星被认为是一颗行星,因此海王星成为已知的第二远的行星,除了在1979年到1999年之间,冥王星的椭圆轨道使它比海王星离太阳更近。1992年柯伊伯带的发现导致许多天文学家争论冥王星应该被认为是一颗行星还是柯伊伯带的一部分。2006年,国际天文联合会首次定义了“行星”一词,将冥王星踢除太阳系重新归类为“矮行星”,使海王星再次成为太阳系最外层的行星。
海王星与太阳之间的平均距离为45亿公里,约30.1个天文单位(AU)。海王星的轨道周期(年)大约相当于164.79地球年,轨道倾角约为1.77°。海王星于2011年7月12日回到绕日公转轨道上它被发现时的那个点。由于地球处于其365.25天周期轨道的不同地点,届时从地球看到的海王星并不会处在它被发现时在天空中的那个位置。从地球上观察,海王星冲日周期为367天,这些周期使它在2010年4月和7月以及2011年10月和11月接近1846年它被发现时的坐标。在2010年8月20日,海王星于发现它的1846年中的同一天再度冲日。
海王星的轴向倾角为28.32°,与地球(23°)和火星(25°)的倾角相似,因此,海王星经历了与地球相似的季节变化。海王星的长轨道周期意味着四季持续40地球年。海王星的自转周期(日)是15小时57分59秒。
因为海王星不是一个固体,它的大气层会发生差速旋转。宽赤道带的自转周期约为18小时,比星体磁场的16.1小时自转慢。相反,在极性区域,旋转周期为12小时,反之亦然。海王星的较差自转是太阳系中最明显的,它会导致强烈的纬向风切变。
海王星的质量为1.0247e+26千克,是介于地球和巨行星(指木星和土星)之间的中等大小行星:它的质量是地球质量的17倍,是木星质量的1/18。因为它们质量较典型类木行星小,而且密度、组成成分、内部结构也与类木行星有显著差别,海王星和天王星一起常常被归为类木行星的一个子类:冰巨星。在太阳系外行星研究领域,海王星被用作一个通用代号,指所发现的有着类似海王星质量的系外行星,就如同天文学家们常常说的那些系外“木星”。
因为轨道距离太阳很远,海王星从太阳得到的热量很少,所以海王星大气层顶端温度只有-218℃(55K),而由大气层顶端向内温度稳定上升。和天王星类似,星球内部热量的来源仍然是未知的,而结果却是显著的:作为太阳系最外侧的行星,海王星内部能量却大到维持了太阳系所有行星系统中已知的最高速风暴。对其内部热源有几种解释,包括行星内核的放射热源,行星生成时吸积盘塌缩能量的散热,还有重力波对平流圈界面的扰动。
海王星内部结构和天王星相似。行星核是一个质量大概不超过一个地球质量的由岩石和冰构成的混合体。海王星地幔总质量相当于10到15个地球质量,富含水,氨,甲烷和其它成分。作为行星学惯例,这种混合物被叫作冰,虽然其实是高度压缩的过热流体。这种高电导的流体通常也被叫作水-氨海洋。大气层包括大约从顶端向中心的10%到20%,高层大气主由80%氢和19%氦组成。甲烷,氨和水的含量随高度降低而增加。更内部大气底端温度更高,密度更大,进而逐渐和行星地幔的过热液体混为一体。海王星内核的压力是地球表面大气压的数百万倍通过比较转速和扁率可知海王星的质量分布不如天王星集中。
海王星的地幔相当于10到15个地球质量,富含水、氨和甲烷。按照行星科学的惯例,这种混合物被称为冰,即使它是一种热的、致密的流体。一个由氢分子组成的导电性很强的水,它有时被称为水的氢离子层,在更深层的高级离子水中,氧结晶,而氢离子在氧晶格中自由漂浮。
另有一些研究人员对钻石熔点进行了详细测量,当钻石融化时就像是水冷冻和融化的过程,在液态形式之上漂浮着固定形式钻石是一种非常坚硬的物质,它很难被融化。由于当钻石在高温下加热熔化容易变成石墨,因此研究人员很难测量钻石在变成石墨之前具体的熔点。科学家将钻石暴露于高压下使用激光轰击钻石表面,4000万倍零海拔压力的作用下,钻石变成了液态。当压力降低至零海拔1100万倍,温度降低至5万摄氏度,固体成块的钻石便开始形成。
科学家发现一些事情并非他们之前所预计的那样,当温度降低至形成固态钻石的状态下,形成的固态钻石并未沉下去,而是漂浮在液态钻石的顶层,就像是钻石冰川一样。在海王星和天王星这样的超大气态行星上,存在着类似钻石液化的超高温度和压力。如海王星,在7000千米的深度,甲烷分解成钻石晶体,像冰雹一样向下滴落。科学家还认为,这种钻石雨还会发生在木星、土星和天王星上。劳伦斯利弗莫尔国家实验室的超高压实验表明,地幔顶部可能是液态碳的海洋,上面漂浮着固体钻石。
科学家唯一能确定海王星和天王星表面是否存在液态钻石的方法就是发射科学探测器,或者在地球模拟这些气态行星的环境特征但以上的方法成本都很高,需要多年时间进行准备。据悉,这项研究报告已发表在《自然物理学》期刊上。
海王星的核心可能由铁、镍和硅酸盐组成,内部的质量大约是地球的1.2倍。中心的压力为7Mbar(700GPa),大约是地球中心的两倍,温度可能为5400K。
海王星的大气占总质量的5%到10%,并向核心延伸了约10%到20%。在高海拔处,海王星的大气层80%是氢,19%是氦,也存在着微量的甲烷。主要的吸收带位于600纳米以上波长的红色和红外线的光谱位置。与天王星比较,它的吸收是大气层的甲烷部分,使海王星呈现蓝色的色调,虽然海王星活泼的淡青色不同于天王星柔和的青色,由于海王星大气中的甲烷含量类似于天王星,一些未知的大气成分被认为有助于海王星的颜色。海王星的大气层可以细分为两个主要的区域:低层的对流层,该处的温度随高度降低;和平流层,该处的温度随着高度增加。两层之间的边界,对流层在气压为0.1巴(10kPa,1巴=0.1MPa=100kPa,约等于地球上1个标准大气压)处。平流层在气压低于10至10微巴(1至10Pa)处成为热成层,热成层逐渐过渡为散逸层。
模型表明海王星对流层的云带取决于不同海拔高度的成分。高海拔的云出现于气压低于1帕之处,该处的温度使甲烷可以凝结。压力在1巴至5巴(100kPa至500kPa),被认为氨和硫化氢的云可以形成。压力在5巴以上,云可能包含氨、硫化氨、硫化氢和水。更深处的水冰云可以在压力大约为50巴(5MPa)处被发现,该处的温度达到0℃。在下面,可能会发现氨和硫化氢的云。海王星高层的云会曾经被观察到在低层云的顶部形成阴影,高层的云也会在相同的纬度上环绕着行星运转。这些环带的宽度大约在50至150千米,并且在低层云顶之上50至110千米。海王星的光谱显示平流层的低层是朦胧的,这是因为紫外线造成甲烷光解的产物,例如乙烷和乙炔,凝结。平流层也是微量的一氧化硫和氰化氢的来源海王星的平流层因为碳氢化合物的浓度较高,也比天王星的温暖。
由于一些尚不清楚的原因,这颗行星的热成层有着大约750K的异常高温。要从太阳来的紫外线辐射获得热量,对这颗行星来说与太阳的距离是太遥远了。一个假设的加热机制是行星的磁场与离子的交互作用;另一个假设是来自内部的重力波在大气层中的消耗。热成层包含可以察觉到的二氧化碳和水,其来源可能来自外部,例如流星体和尘埃。
海王星和天王星之间的一个区别是典型气象活动的水平,海王星的天气特点是极端活跃的。1986年当旅行者2号航天器飞经天王星时,该行星视觉上相当平淡,而在1989年旅行者2号飞越期间,海王星展现了著名的天气现象。海王星的大气有太阳系中的最高风速,据推测源于其内部热流的推动,其风速达到超音速速度直至大约2100千米/小时。在赤道带区域,更加典型的风速能达到大约1200千米/小时。根据蒲福风级即世界气象组织所建议的分级地球风速最大为12级风,约118千米/小时。通过跟踪持续云的运动测得,海王星风速在向东方向的风速为20米/秒,向西风速为325米/秒,盛行风的速度从赤道的400米/秒到两极的250米/秒不等。海王星上的大多数风都朝着与地球自转相反的方向移动。风的一般模式显示,在高纬度地区是顺行旋转,而在低纬度地区则是逆行旋转。流动方向的差异被认为是一种“趋肤效应”,而不是由任何更深的大气过程造成的。在纬度70°S处,高速射流的速度为300米/秒。
海王星赤道的甲烷、乙烷和乙炔的丰度是两极的10-100倍。这被解释为赤道上升流和两极附近下沉的证据,因为没有经向环流,光化学无法解释这种分布。
1989年,美国航空航天局的旅行者2号航天器发现了大黑斑(TheGreatDarkSpot)。在海王星表面的南纬22度,有的类似木星大红斑及土星大白斑的卵状气旋,以大约16天的周期一反时钟方向旋转,称为“大黑斑”。由于大黑斑每18.3小时左右绕行海王星一圈,比海王星的自转周期还要长,大黑斑附近的纬度吹着速度达300米每秒的强烈西风。旅行者2号还在南半球发现一个较小的黑斑极一以大约16小时环绕行星一周的速度飞驰的不规则的小团白色烟,得知是“TheScooter”。它或许是一团从大气层低处上升的羽状物,但它真正的本质还是一个谜。然而在1994年11月2日,哈勃望远镜对海王星的观察发现大黑斑竟然消失了。它或许就这么消散了,或许暂时被大气层的其他部分所掩盖。几个月后哈勃望远镜在海王星的北半球发现了一个新的黑斑。这表明海王星的大气层变化频繁,这也许是因为云的顶部和底部温度差异的细微变化所引起的。
滑行车(Scooter)是位于大黑斑更南面的另一场风暴,是一组白色云团。当1989年旅行者2号造访海王星之前的几个月,科学家发现了它并用这个绰号命名,因为它比大黑斑移动得更快。随后图像显示出还有比滑行车移动得更快的云团。小黑斑是一场南部的飓风风暴,在1989旅行者2号访问期间,风速强度排在第二位。它最初是完全黑暗的,但在旅行者2号接近过程中,一个明亮的核心逐渐形成,大多数最高分辨率的图像上都有。2007年又发现海王星的南极比其表面平均温度(大约为-200℃)高出约10℃。这样高出10℃的温度足以把甲烷释放到太空,而在海王星其它区域的上层大气层中甲烷是被冻结着的。
海王星在类木行星中的一个独有特点就是高层云彩在其下半透明的云基区域投下阴影。虽然海王星的大气远比天王星的活跃它们都是由相同的气体和冰组成。天王星和海王星都不是木星和土星那种严格意义上的类木行星而属于另一类的远日行星,即它们有一个较大的固体核而且还含有冰作为其组成成分。海王星表面温度非常低,1989年测到的顶端云层的温度低至-224℃(49K)。由于季节的变化,海王星南半球的云带的大小和反照率都在增加。这种趋势最早发生在1980年,预计将持续到2020年左右。海王星的长轨道周期导致四季持续40年。
海王星上的风暴是太阳系类木行星中最强的。考虑到它处于太阳系的外围,所接受的太阳光照比地球上微弱1000倍(仍然非常明亮,视星等-21),这个现象和科学家们的原有的期望不符。曾经普遍认为行星离太阳越远,驱动风暴的能量就应该有越少。木星上的风速已达数百千米/小时,而在更加遥远的海王星上,科学家发现风速没有更慢而是更快了(1600千米/小时)。这种明显反常现象的一个可能原因是,如果风暴有足够的能量,将会产生湍流,进而减慢风速(正如在木星上那样)。然而在海王星上,太阳能过于微弱,一旦开始刮风,它们遇到很少的阻碍,从而能保持极高的速度。海王星释放的能量比它从太阳得到的还多因而这些风暴也可能有着尚未确定的内在能量来源。
2007年又发现海王星的南极比其表面平均温度(大约为-200℃)高出约10℃。这样高出10℃的温度足以把甲烷释放到太空,而在其它区域海王星的上层大气层中甲烷是被冻结着的。这个相对热点的形成是因为海王星的轨道倾角使得其南极在过去的40年受到太阳光照射,而一海王星年相当于165地球年。随着海王星慢慢地移近太阳,它南极将逐渐变暗,并且换成北极被太阳光照亮,这将使得甲烷释放区域从南极转移到北极。
海王星有着与天王星类似的磁层,它的磁场相对自转轴有着高达47°的倾斜,并且偏离核心至少0.55半径,或是偏离物理上的中心13500千米。在航海家2号抵达海王星之前,天王星的磁层倾斜假设是因为它躺着自转的结果,但是,比较这两颗行星的磁场,科学家认为这种极端的指向是行星内部流体的特征。这个区域也许是一层导电体液体(可能是氨、甲烷和水的混合体)形成的对流层流体运动,造成发电机的活动。磁场的偶极成分在海王星的磁赤道大约是14微特斯拉(0.14高斯)海王星的偶磁矩大约是2.2×10T·m(14μT·RN,此处RN是海王星的半径)海王星的磁场因为非偶极成分,包括强度可能超过磁偶极矩的强大四极矩,组合有很大的贡献,因此在几何结构上非常的复杂。相较之下地球、木星和土星的四极矩都非常小,并且相对于自转轴的倾角也都不大海王星巨大的四极矩也许是发电机偏离行星的中心和几何强制性的结果。
海王星的弓形激波,在那儿磁层开始减缓太阳风的速度,发生在距离行星34.9行星半径之处。磁层顶,磁层的压力抵销太阳风的地方,位于23~26.5倍海王星半径之处,磁尾至少延伸至72倍的海王星半径,并且还会伸展至更远。
海王星也有光环。在地球上只能观察到暗淡模糊的圆弧,而非完整的光环。但旅行者2号的图像显示这些弧完全是由亮块组成的光环。其中的一个光环看上去似乎有奇特的螺旋形结构。同天王星和木星一样,海王星的光环十分暗淡,但它们的内部结构仍是未知数。人们已命名了海王星的光环:最外面的是Adams(它包括三段明显的圆弧,今已分别命名为自由Liberty,平等Equality和友爱Fraternity),其次是一个未命名的包有Galatea卫星的弧然后是Leverrier(它向外延伸的部分叫作Lassell和Arago),最里面暗淡但很宽阔的叫Galle。这颗蓝色行星有着暗淡的天蓝色圆环,但与土星比起来相去甚远。当这些环由以爱德华·奎南为首的团队发现时曾被认为也许是不完整的。然而,“旅行者2号”的发现表明并非如此。这些行星环有一个特别的“堆状”结构。其起因如今不明,但也许可以归结于附近轨道上的小卫星的引力相互作用。
20世纪80年代中期,认为海王星环不完整的证据首次出现,当时观测到海王星在掩星前后出现了偶尔的额外“闪光”旅行者2号在1989年拍摄的图像发现了这个包含几个微弱圆环的行星环系统,从而解决了这个问题。最外层的圆环,亚当斯,包含三段显著的弧,如今名为“Liberté”,“Egalité”和“Fraternité”(自由、平等、博爱)。弧的存在非常难于理解,因为运动定律预示弧应在不长的时间内变成分布一致的圆环。如今认为环内侧的卫星海卫六的引力作用束缚了弧的运动。旅行者2号的相机发现了其他几个环。除了狭窄的、距海王星中心63000千米的亚当斯环之外,勒维耶环距中心53000千米,更宽、更暗的伽勒环距中心42000千米。勒维耶环外侧的暗淡圆环被命名为拉塞尔;再往外是距中心57000千米的Arago环。2005年新发表的在地球上观察的结果表明,海王星的环比原先以为的更不稳定。凯克天文台在2002年和2003年拍摄的图像显示,与“旅行者2号”拍摄时相比,海王星环发生了显著的退化,特别是“自由弧”,也许在一个世纪左右就会消失。
海王星有14颗已知的天然卫星。海卫一是仅有的一颗大型卫星,被威廉·拉塞尔发现于发现海王星17天后,与其他大型卫星不同,海卫一运行于逆行轨道,说明它是被海王星俘获的,大概曾经是一个柯伊伯带天体。它与海王星的距离足够近使它被锁定在同步轨道上,它将缓慢地经螺旋轨道接近海王星,当它到达洛希极限时最终将被海王星的引力撕开。海卫一是太阳系中被测量的最冷的天体,温度为-235℃(38K)。海王星第二个已知卫星(依距离排列)是形状不规则的海卫二,它的轨道是太阳系中离心率最大的卫星轨道之一。从1989年7月到9月,“旅行者2号”发现了六个新的海王星卫星。其中形状不规则的海卫八以拥有在其密度下不会被它自身的引力变成球体的最大体积而出名。尽管它是质量第二大的海王星卫星,它只是海卫一质量的1/400。最靠近海王星的四个卫星,海卫三、海卫四、海卫五和海卫六,轨道在海王星的环之内。第二靠外的海卫七在1981年它掩星的时候被观察到。起初掩星的原因被归结为行星环上的弧,但据1989年“旅行者2号”的观察,才发现是由卫星造成的。2004年宣布了在2002年和2003之间发现的五个新的形状不规则卫星。由于海王星得名于罗马神话的海神,它的卫星都以低等的海神命名。SETI协会研究员马克·肖华特(MarkShowalter)2013年发现了围绕海王星的一颗新卫星,编号为海王星卫星S/2004N1,直径约为19千米,距地球约48亿千米。
冰质巨行星海王星和天王星的形成,已经证明很难精确模拟。模型表明,太阳系外部区域的物质密度太低,无法用传统的核心吸积方法来解释如此大的天体的形成,因而人们提出了各种假说来解释它们的形成。一种说法是,冰巨星不是由核心吸积形成的,而是由原行星盘内的不稳定性形成的,后来它们的大气层被附近一颗大质量OB型星的辐射炸飞了,其中一部分形成了天王星和海王星。
另一个假说是,它们在离太阳更近的地方形成,那里的物质密度更高,然后在移除气态原行星圆盘之后迁移到它们当前的轨道上。这种形成后迁移的假设是有利的,因为它能够更好地解释在跨海王星区域观察到的小型天体的构成比例。最为广泛接受的对这个假设细节的解释被称为尼斯模型,它探索了迁移的海王星和其他巨行星对柯伊伯带结构的影响。右图是一个显示外行星和柯伊伯带的模拟:(a)在木星和土星达到2:1共振之前;(b)在海王星轨道移动后柯伊伯带物体向内散射后;(c)在木星射出散射的柯伊伯带天体之后。
肉眼看不到海王星,其亮度介乎视星等+7.7和+8.0,比木星的伽利略卫星,矮行星、谷神星和小行星、灶神星、智神星、虹神星、婚神星和韶神星都暗。在天文望远镜或优质的双筒望远镜中,海王星显现为一个小小的蓝色圆盘,看上去与天王星很相似。蓝色来自在于它大气中的甲烷。它在视觉上的细小给研究造成了困难;多数从望远镜中获得的数据是相当有限的,直到出现哈勃太空望远镜和大型地基望远镜与自适应光学技术才获得改观。对无线电频段内海王星的观测表明,它既是连续发射又是不规则爆发的来源。这两种辐射源都被认为是由其旋转磁场产生的。在光谱的红外部分,海王星的风暴在较冷的背景下显得明亮,使得这些特征的大小和形状很容易被跟踪。
1989年8月25日,美国航天局发射的旅行者2号探测器飞越海王星,这是人类首次用空间探测器探测海王星。它在距海王星4827千米的最近点与海王星相会,从而使人类第一次看清了远在距离地球45亿千米之外的海王星面貌。它发现了海王星的6颗新卫星,使其卫星总数增至8颗;首次发现海王星有5条光环,其中3条暗淡、2条明亮。从旅行者2号拍摄的6000多幅海王星照片中发现,海王星南极周围有两条宽约4345千米的巨大黑色风云带和一块面积有如地球那么大的风暴区,它们形成了像木星大红斑那样的大黑斑。这块大黑斑沿中心轴向逆时针方向旋转,每转360°需10天。海王星也有磁场和辐射带,大部分地区有像地球南北极那样的极光。海王星的大气层动荡不定,大气中含有由冰冻甲烷构成的白云和大面积气旋,跟随在气旋后面的是时速为640千米的飓风。海王星上空有一层因阳光照射大气层中的甲烷而形成的烟雾。
海王星与太阳的平均距离为44.96亿公里,是地球到太阳距离的30倍。海王星接收到太阳的光和热只有地球的19%于是其表面覆盖着延绵几千公里厚的冰层,外表则围绕着浓密的大气,海王星的直径49500公里,是地球的3.88倍体积有57个地球那么大,质量只是地球的17倍多,所以其密度也相当小,海王星以每秒5.43公里的速度绕着太阳公转公转一周需要花上164.8年,自转一周15小时57分59秒。
海王星的磁场和天王星的一样,位置十分古怪,这很可能是由于行星地壳中层传导性的物质(大概是水)的运动而造成的。
美国宇航局正在研究可能进行的海王星探测任务。
美国宇航局在2005年提出发射海王星轨道探测器的构想,计划于2016年发送一个或两个探测器登陆海卫一,并探测海王星的大气层,类似伽利略号探测器的大气探测器。
旗舰或基石任务是另一个可能进行的海王星探测任务,需要超过10亿美元的资金。这些任务经费由美国宇航局和欧洲空间局共同负担,这个未来计划目标可能变成木卫二或土卫六,预计不会在2040年之前发射。
由于天文学家对于探测海王星系统的兴趣浓厚,一些学者认为美国宇航局负责的新疆界计划任务(如新视野号和朱诺号)可以提供10亿美元资金,而探测器可以在2010年发射。这个探测器不仅可以研究海王星及其系统而且也将经过木星及土星,并借由其重力节省燃料,然后接近柯伊伯带中两个或三个天体。新地平线号在通过冥王星后也将探测其他目标。
海王星是太阳系中离太阳最远的行星,创造了太阳系中速度最快的风、一个航天器到访过的最多行星纪录。(吉尼斯世界纪录)